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Before the numerical technique that has been developed is described,
an exact solution of Eq. (3) for the special case of constant T is discussed
briefly. The quantity T is a constant when the energy spread of the beam is
independent of the accelerating potential. The exact solution is obtained
almost trivially by differentiating both sides of Eq. (3) with respect to Va and
solving the result for c. The solution for constant 7 is

T(T + V) =
a’' do (4)

v dv
a a

(V) =5(V,) -

In practice, this method has certain distinct advantages and disadvantages.
The primary advantage is that no elaborate computations are needed to calcu-
late o (if, of course, T is assumed to be constant and adequately known). On
the other hand, the derivative of G must be calculated, and, consequently,
scatter in the data could seriously affect the accuracy of the results. The
problem of scatter can be reduced somewhat by one of two techniques. In one
technique, the data is smoothed. Relatively unsophisticated smoothing algo-
rithms should be adequate to provide a substantial improvement in the esti-
mate of c. In the other technique, the scatter often becomes large when the
experimental apparatus is pushed to the limits of its resolving capability. A
beam with a larger energy spread tends to be easier to deal with and has cor-
respondingly less scatter. Therefore, if the parameter T can be defined with
sufficient accuracy, a beam with an extremely small energy spread is not

needed.

Note that near the peak of the measured crcss section, Eq. (4) is in-

determinate. By the application of L'Hospital's rule,

(5)

o(0) =5(0) - T




P —

i g

is obtained. The difficulty of computing acceptably accurate second derivatives
from experimental data would appear to limit the usefulness of this approach

in obtaining the maximum value of the resonance peak. However, for moderate
values of T, it may be possible to minimize scatter so that the curve of G ver-
sus Va is relatively smooth, and a tolerable estimate of dza/dV2 at the origin
can be made. Various types of data smoothing techniques have been developed
that provide estimates for upper and lower bounds for the derivatives of the
function being fitted, which can be used to estimate upper and lower bounds

for the peak value of o.

For the more general case of nonconstant T, it is necessary to resort
to a numerical technique for the solution of Eq. (3). The present technique
requires that the energy range covered by the experiment be large compared
to the sum of the widths of the resonance peaks appearing in the energy inter-
val of interest, and large with regard to . In this case, there will be an
energy range in which o =& because, in that range, the distribution function
is, to first order, a § function compared to the cross section curve. It is
most convenient if that region occurs at energies that are large compared to

the energy at which the resonance peak occurs.

For such conditions, the value of ¢ at large energies is measured
directly, i.e., 0 =0 for Va greater than same value, e.g., Vao. For a value
ag " Val sufficiently small,
o can be approximated in the interval Vo4 = V = vao by means of

of Va, slightly less than Vao, e.g., Va_i, and if V

. o °1 " %o
o(V) = % +‘-,1—:—v-‘; (V - Vo) (6)
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If Eq. (3) is evaluated at V_ = Val.

@ -(v-v

o 1
o‘(Val) =W1—-+—V—a—1)[ VO'(V) e

v
= — Vo, +o—< (V- V_)| e
T4(Ty + Va,) 0"V, -V, 0
Ll
+f VG(V) e av (7

v

where the approximation 0=7 for V 2 Vao has been used in the second integral
in Eq. (7). If the interest is centered on determining the magnitude and shape
of the resonance peak(s), the second integral will be small, and a negligible
error will be incurred if T is approximated in any suitable way for V, greater
than the energy range covered in the experiment. If Va.1 is an energy at which
o has been measured, the only unknown in Eq. (7) is o= 0(Vay). The first
integral in Eq. (7) can be evaluated analytically, and the result is a linear

algebraic equation for Oy

When 9y is determined, the same process can be repeated at Va = Vaz’
a value slightly less than V, . In this way, a marching type of calculation
can be constructed, which permits the calculation of o at each Van all the
way to Va,= 0, with one linear algebraic equation solved at each step. The

result for o, = c(Vi) is,

-(v./r,) (V. /7,) i-d
o1 L o/"i
g [(Ti b e T v e 'kal(Aijoj " Byi% -1’]

i=1,2,**n (8)
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where
0 i=1
k = 9)
1t i=2,3,°°*N
ij s vj-l ij = Tij (19)
Blj = vjcij - Dij (11)
-(V.IT.) '(v. /To)
(t.+V)e J Yo(r.+V, e -1 1
ij = Y. -7,
j-1 j
-(V./T.) -(V. %)
(?.1’%2 + Z'riVi + Vﬁ e yi -(Z‘rf + Z‘ri\i.tl + ij_l) e J 1/1
D.. = -
ij V. - V.
i 5 B
(13)

and N + 1 is the number of values of V at which T is measured.

At the i'th step, o can be calculated directly from the value of T at the
i'th step and from the values of o already calculated in the previous steps.
The calculation, therefore, is extremely rapid and, as shown in the follow-

ing section, accurate.
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oI. ILLUSTRATIVE EXAMPLE

The usual approach to validating the technique developed here would be
to perform the calculation for a set of experimental data and to compare the
results with the results of calculations obtained with other methods. This
approach has, however, several drawbacks. First, no suitable data are
available in this laboratory. Second, of the data available in the literature,
the experimental conditions are generally not given in sufficient detail to per-
mit an unambiguous comparison to be made. Further, in order to compare
with other calculation methods, those methods must be available. The more
sophisticated (and therefore presumably more accurate) methods involve
moderate-to-long computer codes. Even if an effort to develop those codes
were made, the results of the comparisons would not be conclusive since
none of the methods are exact. Comparisons with published calculations are
generally inconclusive because details of the smoothing are usually not

available.

Because of these drawbacks, another approach was taken. It would be
ideal to apply the calculation technique to experimental data to estimate the
true cross section and then compare the result with the real true cross sec-
tion. Since the real true cross section is never known exactly, the calcula-
tion was carried out as follows: An analytically simple, but qualitatively,
realistic form for the true cross section was assumed and used in a thought
experiment. It was assumed that an electron beam with a given energy dis-
tribution interacted with the gas in question, and measurements were made
of the energy averaged cross section. If the measurements were made with
infinite precision, the measured cross section could be obtained by quadrature
from Eq. (1). A perturbation of the exact value of ¢ was generated at each
value of V_ by Monte Carlo techniques in order to simulate the unavoidable
experimental scatter. These values, which include scatter with a specified
value of standard deviation, were then treated as raw experimental data. The
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comparison of the calculated true cross section with the true cross section
from which the ""experimental'' data were derived provides a direct evaluation

of the accuracy of the method.
Accordingly, the form for the true cross section that was selected was

-(V/Vo)

o=0,e (14)

where % is the peak value of the cross section and Vo is a measure of the

width of the resonance peak. By defining

v -
o Lo  Jp. 1% o -
V-v;- S—oo S-ao t-vo (15)

and by means of Eq. (1) with the distribution function given by Eq. (2),

(1 +¢t) (t +v)

S =

is obtained. Note that this result is true for the general case t = t(v).

The thought experiment is then performed under the assumption that,
at each value of v, the ''measurement'’ is sampled from a normal distribution
with a mean of §(v) and a standard deviation that is a fixed fraction 8 of g(v).

Calculations were made for t = 1. Thirty three values of v were selected

between v = 0 and v = 10. At each value of v, three ''measurements’ were
made for a total of 99 data points. Approximately random numbers were ob-
tained by selecting the last four digits in a tabulation of natural logarithms
- given to five places (Ref. 5). The first of those four digits was used to

SR. S. Burington, Handbook of Mathematical Tables and Formulas, Handbook
Publishers, Inc., Sandusky, io (1953) p. 251.
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determine the sign of the deviation from the mean (plus for an even digit and

minus for an odd digit). Any minor deviation from a strictly random selection

of numbers can be interpreted as modeling the bias in an experiment and thus

adds to the analogy to a real experiment. ;

The results of numerically simulating an experiment in this manner are
shown in Fig. 2 for § = 0.1. The true cross section and the exact energy-
averaged cross section are shown for comparison. For this particular reali-
zation of the ""experimental'’ data, all of the data points are within $20% of

the exact energy-averaged cross section.

In a real experiment, it would be appropriate to smooth the data if it
is believed that there is no fine structure that might be lost. The smoothing
interval is generally chosen with this in mind. Accordingly, the simulated
data were subjected to a simple smoothing routine, by fitting, in a least-
squares sense, successive groups of 15 points by parabolas. However, this
crude fitting technique, constitutes a two-edged sword. On one edge, the
scatter is eliminated; on the other, in regions where the scatter is small,
an error is introduced because the true cross section cannot be fit exactly by

a parabola.

The exact energy-averaged cross section was subjected to the same
smoothing procedure, and the resultant data were used to calculate o with the
use of Eq. (8) in order to assess the sensitivity of the calculation technique ’
to errors induced by smoothing. The results of this calculation are shown
in Fig. 3. The error introduced by smoothing is negligible, except very
close to v = 0. Careful consideration of Eqs. (8) through (13) indicates that
this is because of the finite difference nature of the calculation near v = 0
rather than the existence of a peak in the cross section. From these results,
it appears that the calculation of resonance peaks located at least 20% of the
energy spread of the beam away from zero would not be affected by the smooth-

ing process.
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The true cross section calculated from the data of the simulated
experiment is shown in Fig. 4. There is good agreement except for v less
than about 0.5. A more sophisticated smoothing technique would probably
have significantly improved the results for small v. This is borne out not
only by the results but also because the exact solution, the dashed curve from
Eq. (4), also indicates that there are marked irregularities for small v,
indicating that the function is being inadequately fit in that region.

As another example of this same general approach, the new method was
applied to Eq. (1) for another special distribution function of importance. One
of the more common techniques for making measurements of the type under
consideration here is the retarding potential difference (RPD) method (Ref. 6).
In this method, a narrow slice of the energy distribution of the beam is selected
in an effort to increase the monochromicity of the beam. As a first approxi-
mation, it is often assumed that the distribution function is represented by

constant V sVsV +e
t a a

0 elsewhere
By means of this expression in Eq. (1),
V_+e
- & 2 -
O(V‘) = m / VO(V) dv (18)
v
a

is obtained.

The calculation proceeds as previously described, i.e., it is begun in a
region where o ~ 5. For example, for the situation corresponding to Fig. 1,

®R. E. Fox, Rev. Sci. Instr. 26, 1101 (1955).

«18-
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the calculation is begun at large Va. Then, by taking a small step, AV to
Va - AV, and approximating 0(V) by a linear function in that interval,

Eq. (18) can be integrated to provide an explicit expression for G(Va - AV)

av(v,_ - av +% Ja(v, - AV) - e[-;- (v, - AV) +% do(v,)

a(V_ - AV) =
. AV(V, - AV) -3 V, - av)

(19)

At Va - AV, o is given in terms of the energy-averaged cross section at that
point, the true cross section at Va (which is known), and the width of the
energy ''slice'' ¢. By repeating this process and marching inward to lower
values of Va, the complete function ¢(V) can be determined.

Equation (19) has been applied to the recent data acquired by Chantry
for the dissociative attachment of electronef to F2 (Ref. 1). At small energies,
the true cross section is observed to be about a factor of two greater than the
measured cross section. In performing these calculations, the tabulated data
presented by Chantry were used without smoothing (but modified at low ener-
gies as discussed by Chantry). The apparent maximum at nonzero energy in
Fig. 5 may be an artifact related to the limited resolution of the apparatus or
to the sensitivity of the calculation technique to small errors near V = 0, or
both. Regardless, the smoothness of the results, which demonstrates the
stability of the calculation, is apparent. Note that this calculation was easily
performed with a hand calculator.
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IV. CONCLUSIONS

A relatively simple calculational technique has been devised to solve
the integral equation that relates the experimentally measured cross section
to the true cross section. This technique is relatively free of the problems
encountered in previous methods, viz, the stability of the calculation technique
and consequent sensitivity to scatter in the data. Scatter, of course, did
affect the present results, but moderate amounts of scatter do not destroy
the stability of the calculation. In fact, in the numerically simulated experi-
ments, if the solution is smoothed by passing a curve through the midpoints
of the linear segments constituting the solution, a nearly exact solution is
obtained. This smoothing of the solution was applied in the second example
described.in Section III. Smoothing of the raw data generally results in a

smoother solution, just as with any of the other techniques.

If the energy distribution of the beam is poorly known, this uncertainty
will carry over into the solution. On the other hand, unless the beam is nearly
monoenergetic compared to the width of the resonance peak of the cross sec-
tion, a significant improvement in the estimation of the true cross section can

be expected by applying the present deconvolution technique.

For the important and practical case of a translated Maxwellian beam
energy distribution, an exact solution has been found for the case of constant-
beam temperature. Since the result contains the derivative of the measured

cross section, the numerical accuracy of results obtained from this solution

are limited.




Wi

A

DR
R

<&
U kD

LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting

‘ experimental and theoretical investigations necessary for the evaluation and
application of scientific advances to new military concepts and systems. Ver-

i satility and flexibility have been developed to a high degree by the laboratory
personnel in dealing with the many problems encountered in the nation's rapidly
developing space and missile systems, Expertise in the latest scientific devel-
opments is vital to the accomplishment of tasks related to these problems. The
laboratories that contribute to this research are:

Aerophysics Laboratory: Launch and reentry aerodynamics, heat trans-
fer, reentry physics, chemical kinetics, structural mechanics, flight dynamics,
atmospheric pollution, and high-power gas lasers.

) Chemistry and Physics Laboratory: Atmospheric reactions and atmos-
! pheric optics, ckc;ﬂca reactions in poi{nted atmospheres, chemical reactions
! of excited species in rocket plumes, chemical thermodynamics, plasma and
laser-induced reactions, laser chemistry, propulsion chemistry, space vacuum
and radiation effects on materials, lubrication and surface phenomena, photo-
sensitive materials and sensors, high precision laser ranging, and the appli-
catior. of physice and chemistry to probl of law enforcement and biomedicine,

Eloetr%lc- Research Laboratory: Electromagnetic theory, devices, and
propagation phenomena, inc ng plasma electromagnetics; quantum electronics,
lasers, and electro-optics; com ication sciences, applied electronice, semi-
conducting, superconducting, and crystal device physics, optical and acoustical

g imaging; atmospheric pollution; millimeter wave and far-infrared technology.

r Materiales Sciences Laboratery: Development of new materials; metal
i matrix composites and new forms o’ carbon; test and evaluation of graphite
{ and ceramics in reentry; spacecraft materials and electronic components in
fo nuclear weap envir t; application of fracture mechanics to stress cor-
rosion and fatigue-induced fractures in structural metals.

ce Sciences Laboratory: Atmospheric and ionospheric physics, radfa-
tion from the atmosphere, density and composition of the atmosphere, aurorae
i and sirglow; magnetospheric physics, cosmic rays, generation and propagation
of plasma waves in the magnetosphere; solar physics, studies of solar magnetic
fields; space astronomy, x-ray astronomy; the effects of nuclur uplollou,
magnetic ltorm-. and solar activity on the earth's atmosph
magnetosphere; the effects of optical, electromagnetic, and paﬂicuhu udh-

tions in oplcc on space systemes,
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